Final results of the project „Innovative Decision Support System in field crops and conservation tillage“

Indicator 1: Develop a scientifically based and statistically proven comparison between the four main types of tillage. Data collection was carried out from the different locations and variants of the experiments, focusing on the chemical, physical and biological facets of soil fertility. New or not well-studied biological indicators of soil health have been identified. There’s been a build-up of practical knowledge on potential issues and inaccuracies in established analytical techniques that can compromise the final result and conclusions. Persisting trends of severe droughts in summer and autumn call for technological adaptations in crop selection and planting times. In this regard, crops such as rapeseed become extremely risky and became inapplicable in Bulgarian agriculture and respectively in the considered project. This necessitates the substitution of the crop, resulting in limited results about it.

Indicator 2: A network composed of units to follow and predict airborne wheat diseases has been established. There are two primary and complementary sources of information. The first includes traditional field surveys during crucial crop growth stages, which enable the initial detection of infestations within a country or region. The second is a risk prediction model based on measured climate, crop growth stage, follow-up effect of previous fungicide, variety. The collected data was processed using specialized online software in real-time. Numerous farms not directly involved in the project were additionally incorporated into this network of weather stations, models, and survey points. All participants utilized communication methods online photos of infected plants for fast diagnosis. As a result of this collaboration the initial occurrence of rusts in the country for each season was promptly alarmed. The progression of certain diseases over three years was tracked and fungicides with adequate mode of action were proposed. Ultimately, the process of setting up and practically using such a network for making scientifically informed decisions in plant protection was demonstrated. The primary advantages of having such a system include appropriate use of chemical treatments, identification of reduced effectiveness in fungicides, and resistance of crop varieties. Diseases that remain in plant residues, like Septoria tritici blotch (STB) and Fusarium head blight (FHB), are typically associated with no-till farming.

The carried out field assessments unveiled a significant, previously untapped pathological issue of indistinct etiology within the country. In the spring seasons of 2022 and 2023, there was a high number of reports concerning crown rot and bare patch in winter cereals. Two problems were confirmed – infection by fungi of the genera Fusarium and Rhyzoctonia. In addition, phytoparasitic nematodes were also identified in the soil and roots. A multifaceted issue was confirmed, commencing with the roots being attacked by nematodes and secondary infection via wounds by the previously mentioned fungi genera. Losses fluctuate between 5-7% and 50-60%, affecting the tillers and the potential yield. The possible presence of mycotoxins in grains could also pose a risk to the grain market and public health. The current project signified the start of a comprehensive system for nematode and soil disease management, scientifically grounded and suited to the conditions of Bulgaria.

The assembled team of specialists and progressive farmers is a crucial element for the excellence of the results obtained and a necessary condition for the future thriving evolution of conservation treatments and the utilization of cover /intermediate/ crops. The established organizational method, „Innovative Decision Support System in field crops and conservation tillage“ not only exemplifies a productive partnership between individual growers in isolated regions of the nation and scientific professionals in the corresponding discipline, but also acts as a testament to the success of this newly established and innovative method of operation. The measure of the success of the established procedures and innovative work methods is the interest expressed by numerous other farmers who attended meetings and events to publicize the project. This suggests that the instituted project promoting collaboration between science and practice can be effectively replicated. The amassed experience and scientific information provide a solid foundation for the comprehensive development of technology to address specific issues in the technologies under examination.

Indicator 3: Reduction of the amount of applied nitrogen (active substance) per 1 ton of finished product by a minimum of 7% compared to previous practices in the farm or region at a minimum of 5 farms of the operative group (OG) members for a minimum of two crops subject to the project.

  • Different levels of optimization were accomplished across various cultures. The most notable advancement was accomplished in wheat, which is the country’s primary crop. A minimum of 10% active nitrogen substance was observed in all six experiments and farms that carried out fertilization trials.
  • In the context of corn, there have been optimistic results concerning the optimization of nitrogen fertilization rate within the range of 7 to 15%. This level of optimization was attained in two out of the three farms conducting these tests.

Moreover, associations were made that enable the decrease of other major and minor elements that signify a genuine expense in the technology. New approaches for determining the necessity for fertilization were introduced in the country. A variety of evaluation resources were utilized, illustrating the chemical, physical, and biological composition of the soil, along with the impact of climate. The recommendations for fertilization were based on information from the following:

  • Field experiments for wheat cultivar responses.
  • A comprehensive and previously untapped collection of indicators from chemical analysis.
  • Soil’s mechanical composition and type.
  • Soil’s cation exchange capacity.
  • Microorganisms involved in the biogeochemical cycling.
  • Cutting-edge analysis of plant leaf sap, indicating the current status and nutrient needs.
  • Spectral analysis of the amount of chlorophyll and nitrogen respectively in the leaves.
  • Appropriate consideration of the economic and agronomic significance of individual plant phenophases in relation to the application and distribution of fertilization rates.
  • Software processing of most of the above information.

Advancements were achieved in the rural areas, particularly in the field of plant nourishment and fertilization, with the use of microbial and organic substances. This not only improved crop yields, but also the overall health of the plants. However, in some instances, no impact was noticed and potential causes were examined. These findings highlighted another crucial trend – a higher rate of nitrogen fertilization diminishes the plant’s resilience against unfavorable abiotic conditions like spring frost and drought.

Indicator 4: Reducing the cost of fungicides per one ton of production by at least 5% compared to previous practices in the farm or region, at least in 5 farms from the members of the operative group (OG) for one of the crops subject to the project. In 5 out of all participating farms, the number of treatments with fungicides on wheat was reduced from two to one for the season.

Practical conclusions and recommendations as a result of this project: Conservative tillage has a potential to improve soil health in the aspects of biodiversity, functionality and resilience to nematodes, root diseases, extreme climatic phenomena. – No-till proved to be most efficient in physical soil properties improvement and nematodes control through biodiversification, plough pan elimination, soil and conventional tillage the worse possible

  • Cover crops are generally beneficial to soil improvement, but under dry winter conditions and late termination could deplete soil mosture and reduce yield in spring crop – Combination of field scouting and climate based forecasting models could be very useful about diseases control. National network of this practice has a great potential and could be further developed. – Nitrogen application could be optimised through holystic approach to take under consideration chemical, physical, climate, crop variety and microbiological activity of soil. – Transition period to conservative tillage could make a progress faster in medium texture soils, but more heavy and clay soils show even higher potential if right deicions and time considered.
  • Transitional period is associated with higher risk of small seeded grass and perennial weeds, leaf blotch and Fusarium sp. caused diseases, soil pests. Most effiecient control measures should be complex and sustainable.

Conservative tillage saves expenses mainly about fuel. Yields could in autumn wheat are generally unchanged, but on heavy and acidic soils during first two years were substantially decreased in minimuma and no-till. In medium textrues soils yield in corn rotated with wheat was twice higher under extreme drought. The described factors and results influenced the economic costs and income of farms.

Публикувано на Категории Results